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ABSTRACT
As a growing share of the world’s population inhabits cities, a
central focus of current development policy has been on building
urban infrastructure to support increasing population density. An
important component of such policy has been the construction of
major roads and highways, which in principle can reduce conges-
tion, promote development of peri-urban areas, and increase labor
mobility. However, the actual impacts of such investments have
been di�cult to evaluate empirically. Here, we use a rich dataset
capturing the mobility patterns of roughly 9 million individuals
to study the impact of a new super-highway on travel patterns
in and around Colombo, the capital of Sri Lanka. Our results in-
dicate that this road had an immediate and pronounced impact
on travel patterns: people changed their primary routes of travel,
which reduced overall congestion, increased average travel speeds,
and reduced the amount of time spent in transit. We further �nd
that the super-highway led to a modest, but statistically signi�cant,
increase in the total amount of travel in and around Colombo. We
discuss how such insights can inform future policymaking, and
point to several promising areas for future research.
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1 INTRODUCTION AND RELATEDWORK
Urban areas in developing countries are growing quickly. Roughly
one billion of the world’s poor live in cities, and by 2030, another 1.4
billion people are expected to be absorbed by the developing world’s
urban centers [5, 18]. As cities become more densely populated,
new challenges are presented around how to manage congestion
and overcrowding. A key set of questions in urban development
policy thus center around how to build physical infrastructure to
support this burgeoning population. As noted in a recent World
Bank report, “infrastructure and policy decisions made today will
lock cities into urban development patterns for decades to come.”[5]

One common policy intervention used to reduce congestion
in urban areas is the construction of roads. Globally, the World
Resources Institute estimates that global transport investments cost
between $1.4 and $2.1 trillion annually [28]; in 2014, the World Bank
invested $4.1 billion in urban development [5]. And while a growing
body of evidence links rural road construction to improvements
in a range of development outcomes including employment [2],
school enrollment [22], market access [3], and poverty reduction
[21],1 much less is known about the impact of urban infrastructure,
particularly in developing countries.

Indeed, there is some ambiguity in the literature as to how new
transport arteries might impact congestion. While Baum-Snow [6]
shows that highway construction helped draw people from cities
in the U.S. to suburban areas, Duranton and Turner [16] �nd that
congestion in U.S. cities is not reduced by new roads, because new
roads attract additional drivers, who then clog up the system. In
short, many important debates remain unresolved, in part from the
lack of reliable empirical evidence. To our knowledge, no previous
study has addressed these questions in the context of a developing
country.

Part of the challenge in studying the impact of transport infras-
tructure stems from the historical di�culty of obtaining granular
data on urban congestion. Here, we exploit a novel source of data
that can shed new light on these longstanding questions. Speci�-
cally, we use a large dataset of mobile phone records that capture
the trajectories taken by roughly 9 million individuals in Sri Lanka
over a period of several months. Importantly, a major new toll
highway was opened during the period we observe. This makes it
possible to study travel patterns both before and after the opening
of the highway, and thus estimate the causal e�ects of the toll road
on tra�c and congestion.

A rich body of prior work demonstrates how mobile phone
data can be used to model human mobility and migration. Early

1Hine et al. [20] provide a review of these and related studies.
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work focused on identifying statistical regularities in travel patterns
[19, 31, 35], and on quantifying internal migration and population
�ows [9, 10, 12]. In turn, estimates of mobility derived from phone
data have been used to study the propagation of infectious diseases
[37, 38], and to study how populations respond to major geopoliti-
cal events such as natural disasters and mass gatherings [17, 30, 32].
And while prior researchers have pointed to the potential uses of
phone data in urban planning [7, 8, 33], we are unaware of prior
work that uses phone data to study the impact of large transporta-
tion infrastructure projects.

In the current study, we seek to develop a better empirical under-
standing of the e�ect of infrastructure provision on urban mobility.
In this sense, our work relates to recent analysis of the role of trans-
port infrastructure in economic growth [4, 15, 36], on the e�ect
of local economic development policies [23, 24], and to a broader
literature on economic geography [25]. However, relative to these
studies, our goals are much more modest. Our intent is to charac-
terize how a major infrastructure initiative in Sri Lanka impacted
the short-run mobility of the region’s residents. By providing very
�ne-grained, dynamic insight into these e�ects, we hope to lay the
foundation for future work that estimates the welfare consequences
of these and related urban infrastructure policies.

2 BACKGROUND AND CONTEXT
We begin by brie�y introducing the Sri Lankan context and the cur-
rent technologies used to study tra�c and commuting patterins in
Colombo. Sri Lanka’s agrarian-led economy, and pre-colonial and
colonial history, shaped the basic contours of the current transporta-
tion infrastructure. The port city of Colombo (population 750,000,
Figure 1), which to this day remains the commercial capital of the
country, emerged as a multi-modal transport hub as early as the
17th century, when the Dutch constructed internal waterways to
transport coconut and spices for export. Under later British rule,
as export mainstays shifted towards tea and rubber, railways and
roads were built to connect the hill country to Colombo.

After independence in 1948, social welfare policies prioritized
rural roads over national roads. As a result, between 1959 and 1990,
the rural road network grew from 10,000km to 66,000km, while
the national road network grew only from 7,000km to 10,400km
[27]. The trade liberalization that started in 1977 also began shifting
economic priorities towards a more diversi�ed economy.2 This in
turn shifted the needs of the transport sector. With roads accounting
for 94% of the passenger and freight tra�c in the country as of 2012,
the road network growth has not kept pace with the increased
vehicular tra�c [14].

With trade liberalization, industrial activity expanded signi�-
cantly around Sri Lanka’s main international airport in Katunayake
(32km to the north of Colombo). Katunayake, as well as the adjacent
city of Negombo, were connected to Colombo primarily through
the A3 road, which we refer to as the “old road” (see Figure 1).
As early as 1980, planners and policymakers debated construct-
ing a high-speed link between Katunayake and Colombo, citing
economic losses from heavy congestion. Tra�c on the old road
increased by 200% between 1990 and 2000 [14], when construction

2As of 2016, the agriculture sector’s contributed only 7.5% to GDP, as compared to the
industrial sector (27.1%), services (57.%), and taxes (8.4%) [14].

Figure 1: Map of Sri Lankan study area
Notes: Top �gure shows location of Sri Lanka, with red box highlighting enlarged
regions. Bottom left �gure highlights Negombo (north) and Colombo (South) metro-
politan areas, with voronoi cells indicated the location of mobile phone towers within
10km of the city centers. Black road is the “coastal road”; blue road is the “old road”
(A3), red road is the “toll road” (E3). Right bottom �gure shows towers within 20km of
city centers.

was started to build a high-speed link to connect Colombo with
Katunayke and Negombo. But construction was stopped in 2003
and the contract terminated. In October 2009, construction was
restarted and the 25.8km Colombo-Katunayake (E3) Expressway
(CKE) was opened to the public in October 2013 – we henceforth
refer to this as the “toll road,” and it is the impact of this opening
that is the focus of this study. The entire project cost nearly USD
$321 million, funded mainly through a commercial loan from the
Exim Bank of China [14].

Understanding the impact of this new infrastructure is relevant
to the broader policy agenda in Sri Lanka. The toll road is the
�rst of a series of planned transport initiatives in the country. In
particular, a system of expressways is planned to facilitate travel
through and around Colombo, including an Outer Circular (E2)
Expressway that is being built in sections. The toll road will also
eventually connect to the Colombo-Matara (E1) Expressway and
the proposed Colombo-Kandy (E4) Expressway. With current data
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Figure 2: The distribution of subscribers by the average daily
number of transactions

and tools, however, policymakers are ill-equipped to evaluate the
impact of these major investments.

In particular, tra�c congestion is currently measured through
a laborious manual process that involves tracking the travel time
of speci�c vehicles between two or more junctions. This process
happens infrequently and generally fails to capture the nuances
and variation of daily commute patterns. More recently, the Google
Tra�c API has made data on Colombo available, but uptake of
this technology has been low, and our conversations with planners
in Colombo reveals a general lack of con�dence in, and unaware-
ness of, these data.3 Tra�c speeds are currently captured on major
expressways through the use specialized cameras, but this tech-
nology is used for enforcement rather than tra�c management.
There is thus a disconnect between the institutional structures
that oversee tra�c management (the Road Development Authority)
and tra�c enforcement (the Police Deartment). This lack of coor-
dination impacts planning e�cacy, since automated systems for
tra�c monitoring fall under the purview of enforcement agencies.
Currently, a pilot project is underway in Colombo to develop a coor-
dinated electronic system for a few select key intersections that can
provided tra�c management as well as tra�c enforcement applica-
tions. However, such solutions, even if successful, would require
signi�cant investment in physical devices and human resources to
manage deployment and maintenance.

3 DATA
Our empirical results are based on the analysis of travel patterns in
and around Colombo, before and after the opening of the toll road.
To measure these travel patterns, we build on a growing literature
that uses mobile phone metadata to model human mobility [9, 12,
19, 35]. Speci�cally, we use a large database of pseudonymized Call
Detail Records (CDRs) covering approximately 9 million individu-
als from an unnamed operator in Sri Lanka. The dataset contains
3Information gathered by S. Lokanathan in conversations with the Western Region
Metropolis Authority and faculty in the Department of Transport and Logistics Man-
agement at the University of Moratuwa.

4 contiguous months of CDRs, from August 2013 to November
2013 inclusive, and thus overlaps conveniently with the October
2013 opening of the toll road. This dataset is a subset of a larger
dataset that extended up to November 2013 and was not speci�cally
collected for this analysis. As a result our analysis is limited to
exploring the e�ect of the toll road within the relatively short time
period of up to 1 month of its opening.

The CDRs contain the metadata passively collected by the mobile
network whenever a subscriber uses the mobile phone to make or
receive a phone call, send or receive a text, or when initiating a
data session. For each such event, we observe the following bits of
information:

(1) A unique identi�er for the calling/sending party.
(2) The date and time at which the event was initiated.
(3) The ID of the cellular antenna the subscriber was connected

to at the time of the call. Each antenna ID is mounted on a
mobile phone tower, which we can dereference to a physical
(latitude, longitude) location.

Other information contained in the CDR is discarded. Our anal-
ysis focuses only on call and data events, as the text message
CDR was not made available by the operator. Unique identi�ers
do not contain personally identifying information, as they were
pseudonymized by the operator (i.e., each phone number in a CDR
was replaced a unique computer-generated identi�er).

Figure 2 shows the distribution of unique events observed per day
for each of the subscribers in our dataset. The average subscriber
is involved in 12 calls or data requests per day, but this distribution
is heavily skewed (median = 7, SD = 30). In later calibration tests,
we will restrict analysis to the subset of subscribers who are most
active on the network, as it is easier to minutely trace their mobility
patterns - these individuals are de�ned as those involved in 28 or
more events per day (i.e., the top 20% of the activity distribution).

Following standard practice in the literature, we use the GPS
coordinates of the mobile phone towers to construct a voronoi
tessellation of the physical landscape. This divides the landscape
into regions of approximate tower coverage, as can be seen in the
bottom sub�gures of Figure 1. As summarized in Table 1, there
were approximately 4,000 towers owned by this operator in Sri
Lanka in 2013. Within 10km of the center of the two metropolitan
regions of Colombo and Negombo, there were 800 and 100 towers,
respectively, with tower density considerably higher in the capital
city of Colombo.

4 METHODS
To understand the impact of the toll road, we �rst need a method to
quantify travel patterns from the mobile phone data described above.
In particular, we wish to estimate the number of people traveling
between the two zones connected by the road and the speci�c route
chosen by each of those travelers. To understand the impact on
congestion, we also want to calculate the total duration of each
trip, as well as the velocity of travel. Here, we describe the methods
used to (1) extract “trips” from the CDR, corresponding to travel by
subscribers between the two regions; (2) Assign trips to routes, i.e.,
to determine which of the three routes connecting Colombo and
Negombo was used for travel; (3) Measure trip duration and travel
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Region # Towers Avg. Area (km2) Area SD

Sri Lanka ≈4000 18.19 36.07
Colombo (10km) ≈800 0.17 0.25
Negombo (10km) ≈100 2.1 1.63
Colombo (20km) ≈1000 0.42 0.67
Negombo (20km) ≈200 3.3 2.64
Notes: Each row indicates the number of towers in a given geographic region, as well as the

average size of the voronoi cell and the standard deviation of that size. Row 1 includes all of Sri
Lanka; rows 2-3 indicate the towers within 10km of the city centers; rows 4-5 indicate towers
within 20km of the city centers. Approximate numbers shown (�rst column) at the request of the
operator.

Table 1: Characteristics of voronoi catchment areas

speed; and (4) estimate the e�ect of the opening of the toll road on
number of trips taken, trip duration, travel speed.

4.1 Trip Extraction
Our current focus is on understanding the impact of the toll road
on the trips taken between Negombo and Colombo (we discuss in
Section 6 the potential for scaling this approach to travel indirectly
impacted by the road). We begin by demarcating the regions of
Colombo and Negombo as the area within 10km of each respective
citiy center, and later show that our qualitative results do not change
if we use a radius of 20km.4

A trip between Colombo and Negombo is then de�ned as a
sequence of multiple CDR events from a single user, where one
event is associated with a tower in the Colombo region, and another
event is associated with an event in the Negombo region; a trip
from Negombo to Colombo is de�ned analogously. We focus on
trips that occur within a single day. Issues of measurement error
and bias are discussed separately below.

Formally, let s be a subscriber in the dataset and C and N be
the set of mobile towers in the regions of Colombo and Negombo,
respectively.5 Denote by P the chronologically ordered sequence
of locations observed in the CDR of s, i.e., P = {pi }n0 . We consider
s to have made a trip between the two regions if s is observed
at location l1 at time t1 and at location l2 at time t2( > t1) where
l1 ∈ C (N ) and l2 ∈ N (C), such that there are no other observations
in N or C at a time t where t1 < t < t2.

In other words, a trip t satis�es p0 = l1 and pn = l2, and can be
represented as t = {s, l1, t1, l2, t2,P}, where

• s = Subscriber
• l1 = Trip origin
• l2 = Trip destination
• t1 = Trip start date and time
• t2 = Trip end date and time

Using this de�nition of a trip, we identify a total of 9,181,894
trips between Colombo and Negombo in the 4-month span of data.

4The 10km radius is preferred as it corresponds to what local citizens roughly consider
to be the metro regions of the two cities, see Figure 1. In results available on request,
we also test the robustness of later results to radii of 5km and 15km.
5The city centers for Colombo and Negombo ware de�ned as Colombo = (lat - 6.9344,
lon - 79.8428), Negombo = (lat - 7.2111, lon - 79.8386)

4.2 Route Assignment
Having established the set of relevant trips between Colombo and
Negombo, we wish to determine which of the three major routes the
subscriber was most likely to have traveled (see Figure 1). Intuitively,
the idea is to look at sequence of locations at which all s was sighted
between the start (p0) and end (pn ) of the trip, and determine which
route the majority of those locations are nearest to. In practice,
developing this algorithm is not trivial, since the di�erent routes
traverse a di�erent number of voronoi cells,6 the average size of
the cell is di�erent along di�erent routes, and often multiple routes
traverse the same voronoi cell. And most problematically, the set of
sightings for any given trip is often quite sparse. Thus, there exist a
variety of reasonable approaches one might take to inferring route
choice from the sequence of CDR events related to the trip.

We therefore develop four related algorithms for route assign-
ment. The most conservative mode heuristic considers only those
towers that are unique to a single route, and assigns a trip to the
route that contains the majority of unique towers are visited. The
related percentage heuristic accounts for the fact each routes has a
di�erent number of unique towers, and and assigns a trip to the
route that contains the highest fraction of possible unique tow-
ers. Finally, for both the mode and percentage heuristic, we also
develop an aggressive Bayesian method that helps classify trips
with few intermediate sightings. Intuitively, the Bayesian method
allows non-unique towers to assign probability weights to routes
when those non-unique towers are frequently observed on other
trips that occur with high probability on speci�c routes. Formal
de�nitions follow.

Mode Heuristic. For a trip t, let the number of unique mobile
phone towers observed inP for the toll road, old road and the coastal
road be ntoll , nold , and ncoastal . Then the road R (t) assigned to t
is simply

Rmode (t) =

{
argmaxi ni , if argmaxi ni is unique
NA, otherwise

(1)

Where i ∈ {toll ,old, coastal}. This approach classi�es 3,722,721
(40.54%) of all trips; the others are unclassi�ed.

Percentage Heuristic. Given that each route traverses a di�er-
ent number of unique mobile phone towers, the mode heuristic
is likely to biased towards roads that have more unique towers.
The percentage heuristic approach accounts for the variation in the
number of unique towers among the three roads by considering
the observed number of unique towers for each road relative to the
total number of unique towers available to that road. Therefore, a
trip t is assigned a road R (t), as follows.

Rpct (t) =

{
argmaxi

ni
Ti , if argmaxi

ni
Ti is unique

NA, otherwise
(2)

Where, i ∈ {toll ,old, coastal} and Ti is the number of towers
unique to road i . This heuristic classi�es 4,105,624 (44.71%) of all
identi�ed trips.

6Based on the base station coverage regions shown in Figure 1, there were 15,19 and
32 mobile phone towers that served only parts of the toll road, old road and the coastal
road respectively.
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Mode Percentage Mode + Bayes. Percentage + Bayes.

Panel A: Prior to toll road opening
Old road 7,061 (922) 7,545 (1,000) 19,944 (2,089) 18,871 (1,942)
Coastal road 3,275 (632) 3,249 (625) 4,693 (797) 4,551 (774)
Toll road 1,449 (219) 2,318 (421) 2,047 (269) 3,262 (473)
Unclassi�ed 14,899 (1433) 13,572 (1,242) 0 (0) 0 (0)
Total 26,684 (3,097) 26,684 (3,097) 26,684 (3,097) 26,684 (3,097)

Panel B: After toll road opening
Old road 5,512 (741) 5,894 (789) 16,523 (1,892) 15,038 (1,711)
Coastal road 2978 (497) 2,948 (490) 4,576 (705) 4,425 (686)
Toll road 3,016 (472) 3,895 (605) 7,248 (956) 8,884 (1,152)
Unclassi�ed 16,841 (1,852) 15,610 (1,688) 0 (0) 0 (0)
Total 28,347 (3,472) 28,347 (3,472) 28,347 (3,472) 28,347 (3,472)
Notes: Pairs of columns indicate the average (and standard deviation, in parentheses) number of trips per day on each route, across all days,

separately for the period before and after the road opening. Each pair corresponds to a di�erent route assignment algorithm, as described in
Section 4.2

Table 2: Trips per day, according to di�erent route classi�cation algorithms

Bayesian (Probabilistic) Route Assignment. The approaches de-
scribed above are only able to assign routes to a fraction of all trips
observed in the dataset. We thus develop a probabilistic method that
leverages trips previously classi�ed with the heuristic approach to
bootstrap the classi�cation of the remaining trips.

(1) We consider the road assignments by the heuristic step as a
soft assignment for the purpose of this step. Therefore, the
weight assigned to a trip t with respect to a road i ,W (i |t), is
estimated as follows.

Mode: W (i |t) =
ni∑
i ni

(3)

Percentage: W (i |t) =

ni
Ti∑
i
ni
Ti

(4)

(2) The weights are used to estimate the expected number of
already labeled trips and the prior probability of a trip being
on each road before and after the opening of the toll road.
Let Ep (i) be the expected number of trips for a road i ∈
{toll ,old, coastal}, for the period p ∈ {be f ore,af ter } and
Pp (i) be the corresponding prior probability. LetTp,heur ist ic
be the total number of trips during p that were labeled by the
heuristic method.

Ep (i) =
∑
t
W (i |t) (5)

Pp (i) =
Ep (i)

Tp,heur ist ic
(6)

(3) We estimate the conditional probability of a non-exclusive
mobile phone tower,bj , being observed during a trip t on road
i for each non-exclusive mobile phone tower and road pair.
These probabilities are estimated only using trips after the
toll road opened that were classi�ed by the heuristic method.

P
(
bj |i

)
=

∑
t

{
W (i |t) , if bj observed in t

0, otherwise
(7)

(4) Finally, we classify each trip t that was not classi�ed by the
heuristic method using the following Naive Bayesian classi�-
cation formula

RBayes (t) = argmax
i

Pp (i)
∏
j
P

(
bj |i

)
(8)

The Bayesian variants of the heuristics were used to classify trips
that remained unclassi�ed after applying the original heuristics.
The Bayesian variant of the mode heuristic classi�es 5,459,173
(59.45%) of all trips. The Bayesian variant of the percent heuristic
classi�es 5,076,270 (55.29%) of all trips.

Complete details on the assignments made by the di�erent route
assignment algorithms are shown in Table 2. In general, the Bayesian
approaches are able to classify a larger number of trips; but show an
empirical bias toward classifying trips along the Old Road. Since this
estimate will, if anything, lead us to conservatively underestimate
the impacts of the toll road opening, we use this as the speci�cation
to calculate the primary results in Section 5. In separate robustness
checks in Section 5.3, we show that, as expected, the impact of the
toll road looks even larger if we use one of the alternative route
assignment algorithms.

4.3 Trip characteristics
For each classi�ed trip we calculate several characteristics:

(1) Number of Trips: The number of trips for a day d on a road i
is the number of trips on i whose start date time t1 is during
d (Table 2).

(2) Number of Travelers: The number of travelers for a day d on a
road i is the number of unique subscribers traveling on each
day.
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(3) Travel Time: We measure the travel time of each trip as the
di�erence t2 − t1 between the start and end of the trip. The
daily travel time for road i is then estimated as the median
value of the travel times assigned to i on each day of the
observation period. We note that this is almost certainly an
overestimate of the actual travel time, since people may make
phone calls long before departing or after arriving. However,
since our interest is on understanding relative changes in
travel time, we make the assumption that the systematic
error in travel time is comparable for each of the three routes.

(4) Travel Velocity: To estimate the travel velocity for each trip,
we compute the "as the crow �ies" physical distance D (l1, l2)
between l1 and l2, and calculate

Velocity =
D (l1, l2)

t2 − t1
(9)

As a result of using of the "as the crow �ies" distance our
velocity measurements underestimate actual travel velocity
of trips. The daily travel velocity for road i is then estimated
as the median value of the travel velocities assigned to i on
each day of the observation period.

Intra-day variation. Later, we will also disaggregate our daily
results by time of day, to better understand if there are certain
periods when travel is most impacted by the toll road. For this
analysis, we estimate median travel time for trips initiated during
each 20 minute interval of the day, on each route, both before and
after the toll road opening. In that analysis, we will compare the
two-week period one month before the toll opening to the two-
week period one month after the toll road opening. To increase the
precision of these estimates, we employ a recent technique to derive
inter-city travel times with CDR [26]. This method better accounts
for extreme outliers in travel times estimated from CDR, which are
less likely to impact our daily median estimates, but become more
important in the intra-day estimates where data becomes more
sparse.

4.4 Estimation
Finally, to more precisely quantify the e�ect of the toll road opening,
we use a �xed e�ect model of the form:

Vt,d = β(POSTt ) + δt + µd + ϵt,d (10)

where Vt,d is the dependent variable of interest (i.e., number of
trips, number of users, travel time, or travel velocity) on a given
road (i.e., we run separate regressions for each of the three roads),
and POSTt is an indicator variable that takes the value one for days
t that are on or after the opening and zero otherwise. The variable
t controls for route-speci�c time trends, for instance if tra�c is
stochastically increasing or slowing over time, and µd is a day of
week �xed e�ect that accounts for the fact that tra�c patterns may
be di�erent on di�erent days of the week. We are most interested
in the coe�cient β , which indicates the route-speci�c impact of the
toll road opening, after controlling for all of the factors discussed
above.

5 RESULTS: IMPACT OF THE HIGHWAY
We turn now to analyzing the impact of the opening of the E3
super-highway on travel and mobility patterns in Sri Lanka. We

Figure 3: Total trips taken between Colombo and Negombo

begin by examining how the highway impacted the transit routes
chosen by individuals traveling between the two a�ected cities
of Colombo and Negombo, and then discuss how it a�ected the
speed of travel and total amount of time spent in transit. Finally, we
present several robustness checks to “stress test” the main results
and the modeling assumptions made along the way. Quantitative
results are summarized in Table 3, and explained in greater detail
below.

5.1 Travelers, Trips, and Route Choice
Our �rst empirical result is to observe that the total number of
trips taken between the two cities modestly increased following
the opening of the toll road. This can be seen in Figure 3, which
shows a time series of the total number of trips across all routes
over time (dark blue line). The weekly cyclicality is evident, with a
regular lull in travel on Sundays. The red vertical line marks the
opening of the toll road, and the small increase in travel following
the opening is evident.

The aggregated data in Table 2 indicates an increase in the post-
opening period of roughly 5.8%, from 26,684 to 28,347 observed trips
per day. We further use model (10) to control for day-of-week e�ects
and stochastic time trends; results are presented in the �rst column
of Table 3. These estimates indicate that an additional 3,052 trips
were made after opening, which is comprised of 5,255 additional
trips on the toll road, 2,023 fewer trips on the old road, and 150 fewer
trips on the coastal road (though this latter e�ect is not statistically
signi�cant). Similarly, the second column of Table 3 indicates that
2,981 new unique travelers were observed per day, in the period
after the toll road opened.

The pronounced shift in the routes taken by travelers can also
be seen in Figures 4 and 5, which show the number of unique trips
and travelers between Colombo and Negombo on each of the three
main roads. Travel on the toll road sharply increases (blue line), and
is o�set by a corresponding decrease in travel on the old road (black
line). There is thus clear evidence of substitution by certain travelers
onto the faster (and more expensive) toll road. However, travel on
the third coastal road is largely una�ected. These visual trends are
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Number of trips Number of travelers Median travel time Median velocity

Toll Road 5,225*** 4,423*** -25.62*** 8.53***
(145) (123) (1.36) (0.39)

Old Road -2,023*** -1,417*** -7.57*** 1.82***
(390) (310) (0.71) (0.27)

Coastal Road -150 25 0.09 0.42
(134) (107) (0.67) (0.11)

Notes: Each cell represents the coe�cient β from a separate �xed-e�ects regression of a tra�c outcome (column heading) for a given road (row heading) on an
indicator variable of the period post-toll road opening, after controlling for time trends and �xed e�ects (see model 10). All coe�cients other than β are omitted
for clarity. Standard errors shown in parentheses. *** p < .001, ** p < .01, * p < .05

Table 3: Quantifying the impact of the toll road opening on tra�c patterns on each road

Figure 4: Daily trips taken on each route, over time Figure 5: Number of unique travelers on each route

supported by the quantitative evidence in Table 3, which indicate
that the decline in travel on the old road explains approximately
40% of the observed increase in travel on the toll road after opening.
The remaining 60% of travel on the toll road appears to be driven
by the net increase in travel discussed earlier.

It is worth noting the non-trivial number of trips assigned to
the toll road prior to the toll road’s opening. This is evidence of
classi�cation error by the route assignment algorithm, and can help
us better understand possible measurement error in the �gures and
tables we present. In practice, these trips most likely re�ect travel
by subscribers who reside in areas covered by mobile phone towers
that also uniquely cover the toll road once it opens. Given that these
subscribers are likely to continue to travel between the two regions
after the opening, the change in travel volume assigned to the toll
road since the opening is likely to be a better estimate and at worst
an underestimate of the actual volume of travel on the toll road.

5.2 Travel Time and Speed
The opening of the toll road also signi�cantly reduced congestion
between Colombo and Negombo. Figure 6 shows the average (me-
dian) travel velocities on each of the three roads, over time. While
we caution against interpreting the absolute value of the calculated

velocity, since this is subject to considerable measurement error due
to the potential delay between when people start and end their trip
and when they make a phone call from their origin and destination
(see Section 4), the relative change in speed of travel is pronounced.
First, travel speed on the toll road is roughly 30% faster than on all
other roads, and roughly 50% faster than travel on the other roads
prior to the toll road’s opening. Second, travel speeds on the alter-
native routes (and in particular the old road) also increased after
the opening. We attribute this decrease to the reduced congestion
caused by a reduced load on the alternate routes.

The increase in travel velocity equates to a decrease in the
amount of time spent traveling, as shown in Figure 7. While the
absolute travel time is likely an overestimate for the same reasons
articulated earlier, the relative shift is again quite striking. If we
momentarily suspend disbelief and take these estimates literally,
with roughly 9,000 trips on the toll road each being shortened by
roughly 20 minutes, this indicates a daily reduction of 3,000 com-
muting person-hours. This is likely a dramatic underestimate, since
it does not account for travelers who do not own a phone, who use
a phone on a di�erent network, or who simply do not use their
phones immediately before and after traveling. It also does not
account for reduced congestion on the network of roads impacted
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Figure 6: Median daily travel speed on each route Figure 7: Median daily trip duration on each route

by this new artery. We return to these and related issues in the
discussion in Section 6 below.

Finally, Figure 8 disaggregates the impact of the toll road on
the trip length by time of day. Here, we show the median travel
duration for travel between Colombo and Negombo prior to the
toll road opening (blue line) as well as the median travel duration
after the opening (red line). Trips are assigned to 1-hour intervals
based on the time of day at which the trip began. We observe that
while travel times after the opening are shorter at all times of day,
the e�ect is most pronounced at times after the morning commute
hour. Qualitatively, there are still tra�c jams on the toll road in the
morning; these jams are not as bad as the jams on the old road, but
clearly the volume of tra�c still exceeds the maximum capacity
of the road. By contrast, outside of this morning commute period -
and even during the evening commute - travel time on the toll road
appears to consistently occur at the minimum duration possible.

5.3 Robustness and Calibration
Since one contribution of this paper is to present a new method
for using mobile phone data to study the impact of new transport
infrastructure on travel behaviors, we believe it is important to
understand how several key modeling decisions have a�ected the
main empirical results. In particular, we investigate the importance
of the method used to classify trip routes from the original call detail
records (subsection 5.3.1), the potential bias from data sparsity
(subsection 5.3.2), and the importance of how we de�ne origin
and destination regions (subsection 5.3.3). The sum total of these
tests, as well as others omitted due to space constraints,7 lead us to
conclude that the main results reported in this paper – in particular
the signi�cant changes in route choice and large reduction in travel
time – are robust to a variety of plausible modeling assumptions.
However, the exact magnitude of these changes estimated from the
data – an exercise that we leave for future work and discuss below
7In results available on request, we test: (i) alternative route classi�cation algorithms;
(ii) several di�erent thresholds for determining the regions denoted by Colombo and
Negombo; (iii) disaggregating e�ects by weekday and weekend; and (iv) di�erent
methods for removing outliers in the data.

Notes: Shaded areas denote 5th and 95th percent (bootstapped) con�dence intervals

Figure 8: Impact on trip duration, by time of day

– will indeed depend on several modeling decisions. Other potential
sources of bias and related concerns that cannot be directly tested
with our data are discussed in Section 6.

5.3.1 Route Assignment Algorithm. Figure 9 (left) shows the
daily travel time estimates for the three alternative roads based
on the “percentage” route assignment algorithm describe in Sec-
tion 4.2. We note that the median travel time estimated from this
algorithm is slightly lower across the board, presumably due to the
fact that we are able to classify fewer trips than with the Bayesian
algorithm. However, the qualitative picture of the impact of the
toll road are unchanged. In particular, travel time on the toll road
dropped precipitously after the road’s opening, while travel time
on the other two roads showed only modest reductions.
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Figure 9: Testing the robustness of main results. Left �gure uses a mode heuristic route assignment algorithm. Right �gure
uses the population of high activity users. Both �gures are most directly comparable to Figure 7

5.3.2 High-Frequency Users. One concern with these results is
that we are inferring travel times from individuals who, on average,
are only sighted on the network 12 times per day (see Section 3).
Since our estimates rely on the traveler using his or her phone
before and after the trip, infrequent mobile phone users will appear
to take very long trips in our data. If this e�ect is evenly distributed
across routes, it should not impact our ability to infer changes in
the relative trip length between routes, but it would impact our
estimate of the absolute trip length and travel velocity.

To address this concern, we restrict our analysis to the set of
subscribers who are observed frequently in the data, and for whom
our estimates are likely to be more accurate. Empirically, we take
the top 20% of active subscribers, which is equivalent to those
individuals involved in at least 28 events per day (see Figure 2).
Figure 9 (right) shows daily travel time estimates using the top
20% most active subscribers. Two points are most salient. First,
estimates of total travel time are consistently lower on all routes at
all times, re�ecting the intuition that we are more likely to observe
high-activity subscribers immediately before and immediately after
the trip. Second, despite these di�erences, the key qualitative point
– that the opening led to a reduction in travel time of roughly 15%
on the toll road – remains unchaged.

5.3.3 Region of Analysis. Finally, we consider whether the ob-
served e�ects are impacted when considering travel over a more
extensive region beyond the city centers. We estimated the travel
characteristics between Colombo and Negombo with the city re-
gions being bounded by the coverage of mobile phone towers within
20km from the city centers. Since the geodesic distance between
the two city centers is less than 40km we introduced a small neutral
region between the two cities as seen in Figure 1 (bottom right).
Figure 10 shows the daily travel times for the three alternative
roads based on these larger regions. We observe that the e�ect of
opening the toll road is similar but smaller compared to our main
set of results. This decline in the e�ect is intuitive as the advantage

o�ered by the toll road is less signi�cant for travel originating and
ending further away from it.

Figure 10: Robustness to 20km radius

6 DISCUSSION AND LIMITATIONS
The results thus far indicate that the opening of the E3 superhigh-
way had an immediate and pronounced impact on travel patterns
near Colombo. We have also shown that this qualitative �nding
does not change under a variety of alternative modeling approaches.
Here, we address several additional factors that we believe are im-
portant in interpreting these results, including possible sources of
bias and important limitations to consider in future work.

Selection Bias and Representativity. The inferences we make
about travel patterns in Sri Lanka are based on data produced
when mobile phone subscribers use their phones. This leads to
three distinct sources of potential bias:
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(1) Phone Ownership: In Sri Lanka and other developing economies,
mobile phone owners are not a representative sample of the at
large population. Rather, phone owners tend to be wealthier,
better educated, and are more likely to be male [11].

(2) Mobile Phone Operator choice: Our data comes from a single
mobile phone operator that is one of the largest in Sri Lanka;
thus we do not observe the communication or travel patterns
of those that use other networks. When compared to the
census population we �nd that our dataset on average covers
roughly 55% of the population in the regions considered in
this analyses.

(3) Phone Usage: We observe peoples’ locations only when they
are active on the mobile phone network. In general, this
causes us to underestimate the mobility of people, and overes-
timate the duration of the average trip (see also the discussion
in Section 5.3.2). More insidiously, to the extent that peoples’
phone use changes systematically while traveling on speci�c
roads, such changes would bias our estimates of the impact
of the new expressway. For instance, some people may need
to focus more when driving on expressways and would there-
fore be less likely to use their phones in transit. Alternatively,
some people may see the comfort of the expressway as as an
ideal time to catch up on phone calls.

While prior work has shown that certain measures of mobility
derived from mobile phone data approximately generalize to the
entire population [9, 29, 39], the speci�c points highlighted above
are important limitations that have not been su�ciently addressed.
In our context, we are seeking third-party sources of data on tra�c
in Sri Lanka to calibrate our phone-based estimates with traditional
sources of “ground truth” data.

Route Classification. One of the most important and challenging
methodological components of this work was determining how to
assign individual travelers to physical routes. Section 4.2 discusses
several plausible solutions, and Section 5.3.1 shows the general
robustness to this design decision. In the end, however, our choice
of the algorithm was largely arbitrary: we chose the algorithm that
best re�ected our intuition regarding how route assignment from
call detail records, and was rooted in prior work on mobility and
in Sri Lanka [26, 27]. We hope that future work can tackle this
question in a more principled and systematic way, ideally through
validation with a separate source of trusted data. For instance, if
survey data could indicate total or relative �ows on each route
on speci�c days, such data could be used to help choose among
the various route classi�cation algorithms, or better yet, to train a
non-parametric route classi�cation algorithm.8

Short- vs. Long-Run Impacts. While our current focus is on the
immediate impact of the expressway’s opening, economic theory
suggests that over time, the increased convenience of travel will
induce more people to take to the roads, eventually leading to
steady-state levels of congestion similar to the prior equilibrium
8Additional subtleties arise from the non-random location of the mobile phone towers,
which are used to construct the Voronoi division of the physical space that in turn forms
the basis for route classi�cation. Our “percentage” heuristic (see Section 4.2) helps
address this concern, but does not account for the endogenous response of physical
infrastructure to the presence of additional subscribers. If the physical network co-
evolves with human congestion, this will require a more nuanced, dynamic approach
to route classi�cation.

[16]. Here we are constrained by the fact that we have only two
months of data after the road’s opening. In that period, we see
no evidence of the e�ects attentuating, but note that in order to
address these more fundamental economic questions would require
a signi�cantly longer period of observation (and ideally, multiple
new transport infrastructures to evaluate).

Local vs. Systemic E�ects. As shown in Figure 1, our analysis is
based on changes in the travel patterns of people moving between
Colombo and Negombo, the two urban regions most impacted
by the new road. In this sense, we are estimating a local average
treatment e�ect, and ignoring more systemic, general equilibrium
e�ects. On the one hand, this likely leads us to overestimate the
impact of the road on each individual traveler, since estimates of
quantities like median velocity and trip time are based on the most
impacted travelers. On the other, we are likely underestimating the
aggregate e�ects to the broader Sri Lankan society, since reducing
congestion along certain key arteries likely has positive externalities
to the larger transport network.

Privacy Concerns. Our study relies on using the pseudonymized
mobile phone usage logs of millions of subscribers, who never
explicitly consented to have their data used in this study. While
we went to great lengths to ensure that our analysis minimized the
potential privacy risks to human subjects,9 prior work has shown
that even pseudonymized data such as that used in our study can
uniquely identify individuals [13]. While a discussion of the ethical
considerations involved in such research is well beyond the scope
of this paper, our determination was that the potential insights
gained from this line of inquiry justi�ed the minimal risk posed to
mobile subscribers.

7 CONCLUSION
In studying the opening of the E03 super-highway in Sri Lanka,
this paper makes three contributions. The �rst is methodological,
by demonstrating the potential for pseudonymized mobile phone
data to provide new insight into the impact of urban infrastructure
on travel behaviors in developing countries. We develop and cal-
ibrate a set of methods for transforming mobile phone call detail
records into practical measurements that can aid in policy eval-
uation. Related, this paper makes an empirical contribution, by
showing how these methods can reveal detailed information about
the short-term impacts of new transport infrastructure on urban
congestion, and speci�cally on the routes chosen by travelers and
the speed of travel across directly impacted roads. In the context of
Sri Lanka, to our knowledge this represents the �rst and only piece
of empirical evidence on the e�ects and e�ectiveness of the $321
million investment in the E03.

The �nal contribution, and perhaps the most important one, is
to lay the groundwork for what we see as an important research
agenda around understanding the welfare impacts of urban infras-
tructure. Given a longer panel of phone data, we believe the most
important questions focus on quantifying the short- and long-term

9Among other measures: all personally identifying information was stripped from the
data prior to analysis; all analysis was performed on a secure server in Sri Lanka, with
no data ever leaving the country; all results presented involve aggregates over a large
number of subscribers; IRB approval was obtained (including a waiver for informed
consent) from the U.C. Berkeley Committee for the Protection of Human Subjects.
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economic costs and economic bene�ts, as well as the distributional
implications (i.e., how di�erent subgroups are di�erentially af-
fected), of these massive investments. Related work provides a
framework for modeling these welfare impacts [1, 15, 34], but has
not bene�ted from the �ne-grained measurements that we develop
in this paper. Combining the deep theoretical foundations of those
models with the rich data and methods now at our disposal has
the potential to contribute new insight into pressing questions
that a�ect the lives of hundreds of millions of individuals in urban
developing contexts.
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