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ABSTRACT
Collaborative crowdsourcing is a well-established model of work,
especially in the case of open source software development. The
structure and operation of these virtual and loosely-knit teams dif-
fer from traditional organizations. As such, little is known about
how their behavior may change in response to an increase in exter-
nal attention. To understand these dynamics, we analyze millions
of actions of thousands of contributors in over 1100 open source
software projects that topped the GitHub Trending Projects page
and thus experienced a large increase in attention, in comparison
to a control group of projects identified through propensity score
matching. In carrying out our research, we use the lens of organi-
zational change, which considers the challenges teams face during
rapid growth and how they adapt their work routines, organiza-
tional structure, and management style. We show that trending
results in an explosive growth in the effective team size. However,
most newcomers make only shallow and transient contributions. In
response, the original team transitions towards administrative roles,
responding to requests and reviewing work done by newcomers.
Projects evolve towards a more distributed coordination model with
newcomers becoming more central, albeit in limited ways. Addi-
tionally, teams become more modular with subgroups specializing
in different aspects of the project. We discuss broader implications
for collaborative crowdsourcing teams that face attention shocks.

CCS CONCEPTS
•Human-centered computing→Computer supported coop-
erative work; Open source software.
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1 INTRODUCTION
Collaborative crowd communities have recently become common-
place within the information economy. They represent a significant
departure from traditional organizations in terms of worker motiva-
tion, organizational structure, and operating dynamics. Community
members are driven by non-monetary motivations such as reputa-
tion and collective identity [6]. Further, these communities consist
of loosely-knit and geographically dispersed teams with limited
formal structure, roles, or routines. This is in contrast to organiza-
tions, which have clearly defined boundaries, authority structures,
and formal routines [5]. Crowd communities such as open source
software (OSS) projects exhibit growth, maturation, and decline
driven by both endogenous and exogenous processes similar to
more-traditional organizations. However, due to their differences
from traditional organizations, our understanding of these crowds
is limited. This is especially true for teams that are growing rapidly
due to exogenous shocks that draw increased attention [21, 44, 46].

A common mechanism by which projects receive such shocks on
GitHub is by appearing on the trending page. The default view of the
trending page displays 25 projects that have demonstrated a recent
growth in productivity and attention [8]. Projects on the trending
page have the potential to attract significant attention, from users
and future contributors. This represents both an opportunity and
a challenge for their members. They may be able to expand their
workforce by attracting committed and capable new contributors.
Yet, their capacity to coordinate and remain responsive to their
audience might be strained by a deluge of prospective users and
contributors [21]. Furthermore, the vision of the original team may
be at odds with the aspiring newcomers, leading to friction and
negative interactions that may undermine further growth.

Motivated to characterize these challenges, opportunities, and
their consequences, we study the behavior of new contributors and
the adaptive response of existing members from the perspective of
organizational change [10].We first characterize the scale of growth
and the interests and commitment of newcomers. Then we inspect
how core members adjust their work routines in response. Finally,
we employ a theoretical framework of distributed leadership to
contextualize the evolution of the coordination structure.

Our results show that trending results in a veritable explosion
in attention and engagement. Types of engagement include star-
ring the project to indicate interest, using the project software and
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reporting issues with it, suggesting additional features and con-
tributing code and other content to the project. However, the vast
majority of this external attention is restricted to shallow short term
interactions with the project—more so than external engagement
under normal conditions. Despite this, the scale of the attention
shock means that there is still substantial growth in team size and
the work being done. Subsequently, core members shift toward
coordinating the growing workforce and move away from direct
production. Even with this new administrative orientation, mem-
bers struggle to keep up with increased coordination requirements
leading to backlogs, especially with regards to outsiders, such as
taking longer to respond their engagements. Finally, we find that
as members adopt a more comprehensive approach to managing
the burgeoning workforce, they allow outsiders to unofficially fill
in moderately important positions. In addition, members introduce
technological solutions to improve work quality and efficiency—all
in line with a more distributed coordination structure.

In sum, we (i.) characterize the scale and nature of shocks result-
ing from a project being thrust into the limelight and (ii.) shed a light
on the resulting collaboration dynamics between the original team
and interested outsiders from the community. This understand-
ing will provide the necessary background for better equipping
such teams to manage and take advantage of the deluge of good
Samaritans drawn to projects during times of rapid growth.

2 RELATEDWORK
Organizational Growth and Change. Organizational schol-

ars have studied the impact of rapid growth in organization size.
Early research focused on the benefits of such rapid growth such
as an increase in organizational resources [3, 23, 43]. Scholars rea-
soned that these increases can allow organizations to seek out more
opportunities for profits [16] and that they can reduce internal con-
flict as there is less need for internal competition for resources [3].

At the same time, organizational scholars have become aware
of the dysfunctional consequences of growth. First, increases in
size can lead to greater work complexity [7, 43] and, thus, diffi-
culties in coordination [3, 27, 32]. Second, as organizations grow,
relationships between employees become less personal—decreasing
organizational cohesion [27]. Organizations often struggle with
ensuring that these new employees learn their shared norms and
work practices [43]. This is especially problematic when growth
occurs rapidly [27]. In some cases reduction in cohesion is accom-
panied by increases in conflict [32]. Finally, increases in complexity
and decreases in cohesion contribute to ineffectiveness and ineffi-
ciency [32]. This can lead to organizational processes being strained,
stopping the organization from meeting its goals [43].

Recently, organizational scholars have shifted toward identifying
approaches to mitigate the dysfunctions that result from growth.
According to this stream of research, organizations must change
their management style and structure to adapt to growth [27, 32].
To accomplish this, organizations must decentralize decision mak-
ing and introduce more formal rules and procedures [3, 43]. Both
decentralizing and introducing rules and procedures allow organi-
zations to rapidly respond to changes in the environment ,while
maintaining control to facilitate the coordination of work. Organiza-
tions should also restructure to ensure that individuals or sub-units

do not get overwhelmed [32]. This often involves creating new
sub-units and assigning them new work and/or redirecting work
to them from existing sub-units. Finally, organizations must build
and maintain relationships among existing and new members [32].

Drawing from these findings, we develop hypotheses for how
GitHub teams respond to rapid growth due to going trending. How-
ever, we also consider the important differences between crowd
collaborations and traditional organizations. For instance, tradi-
tional organizations have well-defined expectations in terms of
employee productivity. In contrast, crowds are characterized by
volunteers, with different levels of commitment, contributing due
to non-monetary motivations [6]. As a result, participation in these
communities is often characterized by a long-tailed distribution
where most contributors do very small chunks of shallow work
while a small core group performs the bulk of the work includ-
ing overall coordination. [25, 33]. This workload inequality makes
coordination of volunteers more manageable [2, 22, 35, 36].

GitHub. Prior work on GitHub has focused on understanding
the collaborative dynamics on the platform. Researchers have stud-
ied the social and collaborative interactions that take place on the
site and how such interactions impact the software. Qualitative
studies, mainly based on interviews, have found that users infer
each other’s goals, expertise, and interests based on their logged
actions and profile information. This information is then used to
make decisions about which projects to contribute to and how to or-
ganize collaborations [12, 28, 40]. Other work focused onmeasuring
large-scale statistical properties such as the power-law-like distri-
bution of the number of contributors and watchers per project, the
low levels of reciprocity in the followers network, the geographical
distribution users [26], and how coordination efforts by developers
scale with the size of a project [36]. Researchers have also character-
ized the properties of GitHub repositories at large scale including
the fraction of personal and inactive repositories and the fraction
of repositories that use pull requests [20].

Another line of research focused on identifying the properties
and routines of successful GitHub collaborations. Characteristics
indicative of success include diversity in gender and tenure [41],
the use of automated processes such as continuous integration [42],
teams with a high fraction of members with a history of collabora-
tion [9], and low levels of multi-tasking [39]. Rather than charac-
terizing collaboration patterns on GitHub or identifying successful
collaboration dynamics, our goal in this paper is to understand how
such dynamics change when exposed to attention shocks.

Shocks on Crowd Collaboration. Past research has investi-
gated the effects of external shocks on crowd collaborations in other
crowdsourcing platforms such as Wikipedia [21, 44–46]. This work
is unique in two important ways. First, OSS development involves
substantially more complex and diverse work than Wikipedia.
Projects on GitHub incorporate the hallmarks of crowdsourcing col-
laboration in openness and promoting external engagement, much
like Wikipedia. However, they also demonstrate a clear insider vs.
outsider dichotomy in terms of authority enabled by access privi-
leges. Further, these projects face growth and competitive pressures
from other similar projects that also rely on the same audience and
volunteers for success. Second, Github provides tools for setting
access privileges, categorizing, tracking and reviewing work as well
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as project management. That allows us to explore more nuanced
questions regarding response of crowd collaborations to shocks
that parallel what is known about traditional organizations.

3 HYPOTHESES DEVELOPMENT
In this section, we build a research framework informed by prior
work in organizational change management as well as participation
and coordination dynamics of crowd collaborations.

3.1 Community Engagement
The GitHub trending project page is the primary mechanism by
which the platform introduces high quality repositories to the com-
munity [4]. Therefore, it serves as a source for developers and users
to find repositories to contribute to and use [19]. Furthermore, the
trending page provides a star button for each trending repository.
Therefore, we posit that being featured in the GitHub trending list
will lead to a substantial increase in community engagement with
the repository. Thus, this is our first hypothesis.
Hypothesis 1: Trending will increase community engagement
with a repository.

(a) Trending will increase observed community interest, mea-
sured through starring and forking behavior.

(b) Trending will lead to an increase in external contributions.

3.2 Growing Pains
Organizational theory suggests that traditional organizations with
rapidly growing sales or market share are chronically short of
resources and labor. This commonly leads to employee hires to
compensate for growth. This, in turn, causes a number of grow-
ing pains as the existing organizational structure is strained by
the increased number of new and untrained employees and new
tasks associated with growth [13, 17]. We expect a similar trend
for the repositories that are featured on the GitHub trending page.
These repositories are likely experience a sudden increase in the
number of external contributors (Hypothesis 1.b). We posit that
this sudden increase will similarly strain the capacity of the core
repository team. Therefore, we expect that increased workload for
the members will translate into delays and backlogs in tasks.
Hypothesis 2: The shock will strain the capacity of the project
and create backlogs of tasks.

3.3 Adaptation
We draw on organizational theory to build hypotheses as to how
the members of a trending GitHub repository will respond to the
increased attention and contributions from the community,

3.3.1 Work Routines. In firms where the labor force is rapidly
growing, employees from the pre-growth period—being more ex-
perienced and knowledgeable about firm culture—are compelled
to take on more management responsibility [10, 17]. Similarly, we
posit that GitHub repository members would have to spend more
time responding to queries and coordinating the work of the in-
creased number of outside, and potentially inexperienced, contribu-
tors. Correspondingly, we expect them to also scale back their own
development work.
Hypothesis 3: Members will take on a more administrative role

(a) Members will do more organizational work, such as respond-
ing to and directing external contributors.

(b) Members will do less development work.

3.3.2 Coordination. Growing organizations manage the increas-
ing complexity of coordination by adopting a more decentralized
and modular coordination style. They can achieve this through
empowering lower-level employees, specialization of roles or the
division of work among overlapping working groups [10, 17, 30, 43].
However, this flexible structure can lead to a decline in its core val-
ues and culture, which play an important role as a cohesive force.
To compensate, management may choose to make its values ex-
plicit through formalized procedures and highly visible symbols
and slogans [13, 17, 34, 43]. Here, we employ Gronn’s Distributed
Leadership framework as the lens for viewing these phenomena in
GitHub [15, 29]. Gronn proposes that organizations that employ a
distributed approach to coordination will demonstrate three broad
properties; (1.) They encourage workers to dynamically form tempo-
rary teams for spontaneous collaborations, (2.) Employees establish
relationships and responsibilities through collaborations and re-
ceive recognition for their contributions, and (3.) Working practices
are institutionalized as part of the organizational governance. We
operationalize these observations as follows.
Hypothesis 4: After the shock, repository coordination will be-
come more open and decentralized.

(a) Members will increase their collaborative engagement with
outside contributors.

(b) Outside contributors will take on more central roles within
the work routines.

(c) Collaboration will take on a modular structure.
(d) Members will reinforce core values through automated en-

forcement.

4 BACKGROUND ON GITHUB AND DATA
GitHub is a popular social coding platform that provides tools for
collaborative software development, social networking, and repu-
tation, project, and access privilege management. The affordances
of the platform have resulted in a large community of open source
projects and developers. Due to the complexity of software develop-
ment, GitHub provides several features for scaffolding of common
types of work. The availability of these affordances on GitHub
provides us with convenient measures of collaboration dynamics.

GitHub users can engage with a public repository in various
ways. Users can make changes to a repository by submitting a
pull request. Requests need to be approved by a member of the
repository in order to be merged. Non-members can also submit and
make comments on issues, which are used to report bugs, request
changes, or to make general comments. Those interested in creating
an independent copy of the repository for their use can do so by
forking. Finally, users can signal approval of a repository by starring.

Some actions are restricted to only repository members. Reposi-
tory members can do anything non-members can do in addition to
adding new members, directly pushing changes to the code without
a pull request, approving or disapproving pull requests, catego-
rizing issues and contributions, and closing issues, among others.
This allows the members to effectively steer the project but also
introduces an explicit coordination bottleneck.
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We rely on two different data sources: (i.) GitHub trending data,
(ii.) GitHub project trace data. We use (i.) to identify the attention
shocks and use (ii.) to examine how the GitHub community and
the trending project team respond to the shock.

4.1 GitHub Trending Data
GitHub Trending page lists a set of repositories—updated 8 times a
day—to characterize “what the GitHub community is most excited
about today”1. One can filter the trends by language—all languages
are shown by default. These languages include C++, HTML, Java,
Javascript, PhP, Python, and Ruby, which are the top 7 languages
that appear on the language selection drop-down list2. For each
trending repository, website visitors see the owner/repository name,
primary language name, repository description, a star button, and a
list of the top five contributors for the project. According to GitHub,
in order to choose the trending repositories they “look at a variety of
data points including stars, forks, commits, follows, and pageviews,
weighting them appropriately. It’s not just about total numbers, but
also how recently the events happened.” [8].

In this study, we scrape the GitHub Trending page every three
hours—tomake sure each trending change is captured—for 7months
(6/27/18 - 1/31/19). We collect this data for all languages combined,
as well as individual languages. We identify triplets (𝑟, 𝑡, 𝑙) of repos-
itory 𝑟 and time 𝑡 such that 𝑟 was trending at time 𝑡 in language 𝑙
and was not trending any time before during our scraping period
3. To examine the projects with strong trending effects, we further
limit our analysis to the projects that appear among the top 5 trend-
ing results irrespective of whether a project appeared directly or
rose through the ranks. We identify 1,107 such triples 4.

4.2 GitHub Projects Trace Data
We use GitHub event stream data to examine how a repository
team and the broader GitHub community respond to a repository
being featured in the trending repositories list.

4.2.1 GHArchive Data. We use GHArchive archives (https://www.
gharchive.org/), which provides events information about GitHub
repositories, to retrieve event data between January 2018 and Febru-
ary 2019 (inclusive) for all repositories. This archive includes times-
tamped data on a large number of events including stars, pushes,
pulled requests, issues, comments, member additions, among many
others. There are approximately 350K repositories with at least one
star or fork in the timeframe of our shocks (6/27/18 - 1/31/19).

4.2.2 REST API. While the GHArchive data is rich, it still does not
include some important events that are central to our measures.
As such, we complement that data by using GitHub REST API
in three ways. First, we retrieve the language of each repository
with at least one event within the study window. This important
feature is used in our propensity score matching step (details below).
1https://github.com/trending
2Top languages list is personalized for logged in GitHub users. We use the non-
personalized ordering here.
3In order to account for left censoring, we only consider trending repositories 14 days
after the beginning of the scraping period
4We originally identified 1,297 triplets. However, 190 were created at most 7 days prior
to when they were trending or had a very small amount of activity during that 7 day
period (i.e. no stars or forks). We are unable to compute various measures for these
repositories and thus we removed them from our study, resulting in 1,107 triples.

Second, we collect data about 36 additional event types such as
subscribe, renamed, and labeled, related to actions on issues and pull
requests to study group dynamics. Third, we collect data on commits
including author ids and status updates to identify automated tasks.
Unlike GHArchive, data collection through the REST API is rather
slow. Therefore, we collect this data for our shocked repositories
and the set of control repositories identified using propensity score
matching. In total, there are roughly 7K such repositories.

4.3 Preprocessing
We perform two preprocessing tasks that are important for ensur-
ing the reliability of the our outcome measurements: (1) member
identification and (2) removal of bot activity.

4.3.1 Member Identification. The evaluation of many of our hy-
potheses (2(a), 3(a), 3(b), 4(a), and 4(d)) rely on our ability to distin-
guish repository members from external contributors. To identify
members, we use all events from GHArchive between 01/01/2018-
01/31/2019. A user is labeled as a member if they perform any event
that is restricted to members only. One limitation of this approach
is that there could potentially be users who have been members
of repositories since before 01/01/2018 but did not use any mem-
bership privileges during the period. However, these users are not
exercising any member-level authority and are no different from
outsiders in their observed behavior. Therefore we expect such
users to have little or no effect on our outcome measurements.

4.3.2 Removal of Bot Activity. GitHub allows teams to use task au-
tomation or bots for tasks such as spam prevention and code quality
assessment and deployment. Bots generate tremendous amounts of
activity/events that are not useful to understand people’s collabo-
rative dynamics. We use the following two fold method to identify
and remove bot accounts from our study. First, we filter out GitHub
accounts with usernames that end with either “bot” or “[bot]”. Next,
to identify other bots that do not follow this standard, we perform
a simple classification. We find an activity level, in terms of the
average daily number of pushes when an account was active, above
which an account is considered a bot. To evaluate different thresh-
olds, we bucket accounts by number of pushes between ∞, 1000,
500, 200, 100, 50, 25, 13, 7, 4, 2, and 0. We manually label 10 ran-
domly selected accounts from each bucket as bots or human by
observing their activity. Next, we find the threshold that maximizes
the macro F1 score weighted by the distribution of accounts in the
complete data set. We find that the best threshold is 13 average
daily pushes (𝐹1 = 0.78). Based on this classification, we remove 38
bot accounts in 54 treated repositories and 45 bot accounts in 67
control repositories.

5 MEASUREMENT
In this section, we describe the construction of measures to test our
hypotheses. Table 1 provides a summary of all the measures.

5.1 External Engagement
For hypothesis 1, we need to measure the engagement of external
users (non-members) with the repository. We measure general in-
terest and contributions separately. To measure external interest
(H1a), we track the number of stars and forks received during a

https://www.gharchive.org/
https://www.gharchive.org/
https://github.com/trending
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period. We use both the raw number as well as a log normalized ver-
sion. For a measure 𝑀𝑡 at time period 𝑡 , the normalized version of
the measure is 𝑁𝑡 = log

(
𝑀𝑡−𝑀𝑡−1
𝑀𝑡−1

)
. We use this normalization for

any metric that is a count or a duration. We also measure external
contributions (H1b) using three measures that capture contribution
at different levels of commitment; (1) Number of external contribu-
tors — users who perform any action in the repository other than
starring or forking, (2) number of issues opened by external users,
and (3) number of pull requests submitted by external users.

5.2 Backlogs and Productivity
For hypothesis 2, we need to measure the productivity of members
to assess whether the flow of external contributors expected after
the shock creates backlogs. We measure productivity in two ways.

First, we define response delay as the average amount of time it
takes amember to respond to an issue or pull request. This measures
the overall responsiveness of the members. Second, we measure
closure efficiency as the effectiveness of the members in closing
open tasks. To do so, we first define the concept of a stale issue
or pull request. We consider a task that has remained open for 60
days as stale. We assume that stale items are probably outdated and
not will not lead to further action. We then consider the amount
of time available to close a task during a period as the minimum
of the time remaining during the period and the time remaining
before it becomes stale. Finally, we measure the repository issue
(pull request) closure efficiency, as 1 minus the average fraction of
time taken by members to close active issues (pull requests) and
the time available to them.

5.3 Member Administrative Orientation
For hypothesis 3, we need to evaluate whether members in shocked
repositories are becoming more administration oriented. We sep-
arately measure volume of administrative work (H3a) and devel-
opment work (H3b). For development work, we measure (1) the
total number of pushes and pull requests by members and (2) the
total number of lines of code or text members added using pushes
and pull requests. For administrative work, we measure the total
number of issues (pull requests) closed.

5.4 Coordination Processes
For hypotheses 4, we need to measure various aspects of a project’s
coordination patterns and openness.

Member Engagement with Outsiders. Members engage outsiders
primarily through pull requests and issues. Therefore, we measure
member engagement with outsiders (H4a) using (1) the average
number of issues (pull requests) edited by a member and the (2) the
total number of outsider pull requests accepted during a period.

Decentralization. We quantify decentralization within projects by
examining the distribution of collaborative effort between members
and outsiders. We use two types of metrics to evaluate the changing
role of outsiders5. First, in order to assess the extent of the impact

5Another potential way to examine decentralization is to quantify the rate with which
outsiders transition to project members. However, recruitment of members is, in
general, a slow process and we expect our study period may not be long enough to
capture changes.

Table 1: Measurement of GitHub project behavior used to
test our hypotheses described in section 5

Group Measure

Ex
te
rn

al
En

ga
ge

m
en

t
(H

1)

External
Interest

# Stars
# Forks

External
Contribution

# External Contributors
# Issues Opened
# PRs opened
Avg. # Files Edited by Outsiders

B
ac
kl
og

s
(H

2) Productivity

Issue Response Delay
PR Response Delay
Issue Closure Efficiency
PR Closure Efficiency

M
em

be
r

O
ri
en

ta
ti
on

(H
3)

Development
Work

# Pushes and PRs
# Lines of code

Admin. Work
# Issues Closed
# PRs Closed

C
oo

rd
in
at
io
n
Pr

oc
es
se
s

an
d
D
ec
en

tr
al
iz
at
io
n

(H
4)

Member
Engagement
with Outsiders

Avg. # Issues Edited by Members
Avg. # PRs Edited by Members
Total # PRs Approved

Decentralization

Outsiders in Top File Editors
Outsider Centrality-File Net.
Outsider Centrality-Issue Net.
Outsider Centrality- PR Net.

Specialization
Modularity of File Network
Modularity of Issue Network
Modularity of PR Network

Automation Binary use of Automation
# Automated Tasks

that outsiders have on project’s output, we measure the percentage
of outsiders among the top x% users in terms of files edited.

Second, we measure the role of the outsiders in the collabora-
tive process by assessing their degree centrality in three types of
collaboration networks: collaboration in (1) files, (2) issues, and (3)
pull requests. We construct each of the collaboration networks as
follows. First, we build a bipartite network that indicates which
users edited which items. In the file-user network, we add an edge
between a user and a file if the user has edited the file. In issue-user
and pull request-user networks, we add an edge between a user and
an issue (pull request) if the user has taken any action in relation
to it (e.g. open, close, comment, label, review, pin). Next, we con-
struct the collaboration network by getting the projection of the
bipartite network on the users such that the weight contributed by
an item acted on by two users is inversely proportional to the total
number of users that have acted on it [31]. Rather than measuring
the change in the mean centrality of outsiders, which would be
problematic since the size of the networks can change, we measure
the fraction of outsiders that are among the top 𝐾% most central
nodes. We test several values of 𝐾 between 10% and 50%.

Specialization. Modularity of a network measures the degree
to which it is organized into groups of nodes that interact more
often with each other than with outsiders. In the file, issue, and pull
request collaboration networks of a repository, we employ it is an
indicator of the extent to which contributors specialize on different
aspects of the project, such as contributing code for a particular
feature or addressing certain types of issues.

Automation. GitHub project teams can use automation to per-
form a variety of routine tasks, such as running tests against sub-
mitted pull requests, edit-locking stale issues and pull requests for
spam prevention, and build and deploy code. In general, these tasks
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reflect the values and standards members wish to uphold in addition
to being a mechanism for increasing productivity. We consider two
measures in this context; (1) A binary value indicating if a project
uses any task automation and (2) the unique number of such tasks.

6 METHODS
In the following sections, we detail our approach for constructing a
comparison group of repositories using propensity score matching,
operationalizing our measures, and testing our hypotheses using
difference-in-difference.

6.1 Propensity Score Matching
We use propensity score matching (PSM) to select a comparable set
of matched repositories [18, 37]. Broadly, this involves four steps;
(1.) We estimate the likelihood (i.e. propensity) of a repository
receiving the treatment (i.e. going trending on a given day) through
a regression with an appropriate set of covariates described below.
(2.) For each treated repository, we find the nearest neighbors w.r.t.
a combination of the propensity and covariate similarity, (3.) We
stratify the resulting set of shocks and matches by their propensity
scores, and (4.) Within each strata, we estimate the overall similarity
of the matches to the shocks w.r.t. covariates to ensure we have
adequately accounted for selection effects. In the following sections,
we describe this process in detail.

6.1.1 Covariates. While we are unaware of the exact design of
the algorithm that GitHub uses to select trending repositories, we
know that it is largely based on the size and the growth of external
attention measured by stars and forks [8, 38]. In fact, according to
the former head of GitHub’s marketing team, “stars are the primary
consideration for whether a repository is trending or not" [4]. Based
on this we use the number of daily stars and forks for estimating
the likelihood of each repository-date combination having experi-
enced a shock. Our goal is to match each shocked repository to a
control set of non-trending repository-date combinations that had
a similar propensity to be shocked based on the scale and trend
in attention growth in the preceding week. To do so, we condi-
tion on the following covariates. First, to account for volume, we
use daily number of stars and forks a repository received over the
week preceding the day of the shock. Second, to account for daily
changes, we also use Log ratios of daily numbers of stars and forks
of consecutive days, with the count of the more recent day as the
numerator, over the week preceding the day of the shock. To be a
candidate for the matched set, a repository-date combination must
meet the following conditions: (i) the repository must not appear
anywhere on the GitHub’s trending page during our study period
and (ii) the repository must receive at least one star or fork during
the week prior to the date.

6.1.2 Propensity Scores. We model the likelihood of a repository
trending as a logistic function of our covariates to estimate propen-
sity scores for each repository-date in our dataset. Given the im-
balanced nature of our data (1,107 positive and 27 million negative
instances), we use weighted logistic regression and apply a weight
to each class proportional to the class size. The resulting model
clearly differentiates between shocks and non-shocks as seen by
the propensity score distributions in Figure 1.

(a) (b)

Figure 1: Propensity Score Distributions. (a). Shocks vs. All
Non Shocked. (b). Shocks vs. Matches

6.1.3 Matching. We now use the estimated propensity scores to
define our control set. Rather than simply using the repositories
with the closest propensity score, we use a hybrid method that,
for each shock, first defines a sufficiently similar neighborhood
using the linear (i.e. log-odds) version of the propensity score (10%
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√
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and then selects the nearest neighbor repositories of the same pro-
gramming language in terms of the Mahalanobis distance based
on the covariates [37]. The version of the Mahalanobis distance
we employ weighs its different components by their effect sizes
from the regression. This way, we prioritize those covariates that
are highly predictive of the propensity score [14]. If we do not find
an adequate number of matches within propensity score neigh-
borhood, we resort to selecting the remaining matches from the
next nearest neighbors in terms of the propensity score itself [37].
Following this procedure, we select 5 matches for each of the 1,107
shocks that remain in our dataset.

Figure 2 shows time series of the number of daily stars and forks
for shocked and control repositories vs. the number of days from the
day of the shock.We observe that both groups of repositories exhibit
an increase in attention prior to the shock – which is expected
since GitHub selects repositories with increasing visibility for their
trending page, and control repositories should exhibit a similar
pattern by the design of the matching procedure. However, after the
shock, control repositories return to their baseline much faster than
shocked ones. This is also to be expected since control repositories
were not listed on the trending page and thus do not receive an
additional boost in attention.

6.1.4 Stratification. Next, in order to account for any selection
effects that may remain after matching, we stratify the combined
shocks and matches dataset using the linear propensity score such
that the behavior of shocked repositories is compared only against
that of matched repositories in the same strata [18]. We apply the
following procedure:

(1) Remove all matches that have a linear propensity score (PS)
less than the minimum PS among the shocks (𝑃𝑆𝑚𝑖𝑛) (11
matches removed).
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(a) (b)

Figure 2: Number of stars (a) and forks (b) vs. number of days
from the shock for control and shocked repositories.

(2) Remove all shocks that have a PS greater than the maximum
PS among the matches (𝑃𝑆𝑚𝑎𝑥 ).

(3) The initial block is defined by [𝑃𝑆𝑚𝑖𝑛 , 𝑃𝑆𝑚𝑎𝑥 ]
(4) Repeat the following steps until there are no blocks left to

split
(a) For each block, calculate the t-statistic (t) for the mean dif-

ference in PS between shocked and matched repositories
(b) If | 𝑡 |≤ 1, treatment is sufficiently uncorrelated with PS.

There is no need to further split the block
(c) If | 𝑡 |> 1, Split into two blocks along the median PS of

the block if each new block has at least 𝑚𝑎𝑥 (3, 𝐾 + 2)
observations, where 𝐾 is the number of covariates.

This approach splits our data into 6 consecutive blocks with
different numbers of shocks and matches (Table 2). All except the
smallest block retain approximately the 1 to 5 ratio between shocks
and matches. In the smallest block with 44 shocks corresponding
to the highest PS scores there are only 3.7 times as many matches.

Table 2: Propensity Score Block Statistics

Block
Lower
Bound

Upper
Bound Shocks Matches t

1 -2.56 4.88 548 2768 -0.33
2 4.88 12.58 278 1379 -0.21
3 12.58 24.60 140 688 0.11
4 24.60 39.54 65 350 0.28
5 39.54 57.64 32 176 -0.02
6 57.64 375.5 44 163 0.96

6.1.5 Balance. We verify that matches are sufficiently comparable
to the shocks by evaluating the balance of the covariates using
the standardized mean difference (SMD). First, we estimate the
maximum value that the SMD of a covariate can have if group
membership (shocked or matched) accounts for less than 1% of
its variance using the formula 𝑟 = 𝑑√

(𝑑2+1/(𝑝𝑞))
, where 𝑟 is the

square root of the variance, d is the SMD, 𝑝 is the fraction of shocks
and 𝑞 = 1 − 𝑝 [11]. Considering the 1:5 ratio between shocks
and matches overall, we arrive at an upper bound for the SMD of

0.269. For each covariate, we estimate an overall SMD across all
the blocks by using the weighting scheme from [18] that takes into
account the number of shocked and matched repositories as well
as the distribution of the covariate values in each block. For all our
covariates, SMD calculated in this manner satisfy the estimated
upper bound constraint. The maximum covariate SMD is 0.22 and
the mean, when weighted by their corresponding effect sizes in the
regression, is 0.13. This indicates that match quality is substantially
better for covariates strongly associated with the propensity.

6.2 Hypothesis Evaluation
6.2.1 Difference-in-Shocked Analysis. We evaluate the first order
behavioral changes in the treated repositories before and after the
shock. For a behavior, 𝑦, we measure the change in a given treated
repository as 𝑦𝑡 −𝑦𝑡−1, where 𝑦𝑡−1 and 𝑦𝑡 are the median measure-
ments of 𝑦 before and after the treatment respectively. We evaluate
the statistical significance of this difference using Kruskal-Wallis
one-way variance test [24]. Given that the control repositories also
exhibit increased outside engagement, the observed response may
be driven by a combination of organic growth and the attention
shock. Thus, in order to the disentangle these effects, we also em-
ploy a diff-in-diff model.

6.2.2 Difference-in-Difference Model. We use a difference-in-diff-
erence (DD) regression approach [1] to compare the changes in
shocked and matched repository behaviors to test our hypotheses
described in Section 3. Difference-in-Difference is a quasi experi-
mental approach that estimates the effect of a treatment in obser-
vational data by comparing against the outcome in the treatment
set to a counterfactual derived from a suitable control set. We use
this measure to characterize the change in each of the behaviors of
interest (described in Section 5) 30 days before and after the shock.
In order to account for propensity score based stratification in our
model, we use a fixed effect for the block to which an instance
belongs. This mixed effects model is summarized by the following:

𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝐼 + 𝛽3𝑡𝐼 + 𝛽4𝐵 + 𝛽𝑥𝐶 + 𝜖
where 𝑦𝑖𝑡 is the outcome for repository 𝑖 for behavior 𝑦, 𝑡 is an

indicator variable for time period (0 during the period before the
reference date and 1 after it), 𝐼 is an indicator variable for treatment
(1 if 𝑖 is in the treated set or 0 otherwise), 𝐵 is the PS block to which
𝑖 belongs, 𝛽𝑥𝐶 is a placeholder for controls and 𝜖 is residual error.
The coefficient 𝛽3 represents the difference in changes in outcome
𝑦𝑖𝑡 over time between the treatment and the control group.

7 RESULTS
In this section, we describe the results for our hypotheses based on
the difference-in-shocked and difference-in-difference estimates.

7.1 H1: External Engagement and Contribution
7.1.1 Engagement. Figure 3 shows that the number of stars and
forks received by a repository increases substantially after being
shocked. The difference estimates show that a shocked repository
receives approximately 107% more stars and 67% forks than before
on average. Also, this increase is even larger when compared with
the control (237% for stars and 131% forks). This suggests that
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attention on shocked repositories is growing rapidly, while the
attention on the control repositories is rapidly returning to baseline.

7.1.2 Contribution. We also observe ≈ 50% increase in the number
of users who performed at least one action other than starring and
forking (Figure 3). Further, this observation remains statistically
significant for higher thresholds of 2 (33%), 3 (28%), and 5 (7.5%) ac-
tions. We observe similar but smaller effects for the number of pull
requests (5%) and issues opened (25%). Similar to our observations
with low-effort engagement, the increase in external contributions
in shocked repositories is even larger when compared with the con-
trols which seem to be slowing down. However, when considering
the number of files edited by external contributors we find that the
external contributions are not scaling at the same rate. In fact, we
see that on average an outside contributor edits 37% fewer files and
that this effect persists, to a lesser extent (10%), when compared
with the control set. This provides a more nuanced perspective of
increasing outsider contribution, where most contributions from
the expanded outsider community are relatively shallow. Taken
together, our results support hypotheses 1(a) and partially support
1(b) – there is a large increase in engagement, in terms of software
interest, but also in willingness to contribute, albeit shallow ones.

7.2 H2: Backlogs
With external engagement increasing, we expectmembers of shocked
repositories to be overwhelmed by the growing number of tasks
that need their attention. While, some evidence of this emerges, our
observations depict a more complex portrait of the situation (Figure
4). After the shock, the amount of time it takes a member to respond
to a new issue or a pull request increases substantially, by 30% and
42% respectively. This suggests that members are indeed feeling the
strain of an increased workload. This decrease in responsiveness is
even larger compared against control repositories where external
attention is declining when compared to the reference date.

However, we do not see conclusive evidence suggesting that
members in shocked repositories are becoming less efficient in ac-
tually closing pull requests or issues. While the efficiency of dealing
with pull requests seems to decrease slightly (≈ 4%), this slow down
is no different from the one observed in control repositories, sug-
gesting that this slowdown is a consequence of increased organic
attention, but not of the shock itself. In addition, issue closure ef-
ficiency does not show any change in shocked repositories either
with or without comparison to the controls.

Overall, members of shocked repositories are slowerwith regards
to their initial response towards external engagement. However,
they are still managing to keep up with the workload by follow-
ing through on tasks. In summary, our results partially support
hypothesis 2.

7.3 H3: Member Administrative Orientation
How do the members of shocked repositories compensate for the
increasing demands on their time from outsiders? Figure 5 shows
that, as we hypothesized, members of shocked repositories become
more administration oriented.

7.3.1 Admin Work. We observe that members are trying to keep
up with the increased administrative overhead of engaging with

outsiders. The number of issues and pull requests they close increase
substantially after the shock, with the number of issue closures
increasing by 33% and pull request closures increasing by 11% after
controlling for the number active items (issues or pull requests)
during each period.

7.3.2 Development Work. Members of shocked repositories are
doing substantially less development work in the aftermath of
the shock. On average, they submit 38% fewer pushes and pull
requests in the period after the shock. They fall behind members
of control repositories even more (42%). We also inspect the lines
of code (or text) changed by members as this metric can be more
illuminating in this context. Again, we observe that members in
shocked repositories reduce the number of lines they change—
albeit by a smaller percentage of 18%. This decline is much more
substantial (57%) when compared to the control set.

Overall, we find that members in shocked repositories forego
development work to coordinate external engagement and contri-
butions, providing support for hypotheses 3(a) and 3(b).

7.4 H4: Coordination Processes and
Decentralization

Based on our hypotheses, we expect that GitHub projects that expe-
rience an attention shock will become more open and decentralized.
In general, our results largely align with the expectation and pro-
vide partial support for hypothesis 4 (see figure 6). However, there
are several important caveats and robustness tests discussed below.

7.4.1 Member Engagement with Outsiders. The results show that
members are trying to accommodate the greater volume of incom-
ing contributions. The number of pull requests approved increases
by a 12% for shocked repositories. However, this increase is no
different from that of the control set. Therefore, this increasing
openness appears to be a function of the organic growth of a repos-
itory rather than the effect of an attention shock. We also do not
see a significant change in the number of issues edited by members
among shocked repositories. However, in comparison to the control
set, the story changes — there is indeed a large increase (30%) in the
number of edited issues bymembers in shocked repositories relative
to control. This suggests that shocked repositories are maintaining
their engagement at higher levels than the control set. In terms of
engagement on external pull requests, we observe that individual
members in shocked projects edit moderately fewer pull requests
(17%) than before, but, in fact, they are editing more, almost 44%,
relative to the control set. We find support for hypothesis 4(a), but
the effect is due to both natural growth and the shock; and the
specific type of engagement (issues or pull requests).

7.4.2 Decentralization. We find evidence for hypothesis 4(b). Mem-
bers of shocked repositories do indeed allow outsiders to take on
more central positions in work, thereby adopting a more decentral-
ized brand of coordination. However, there is one important caveat.
First, we observe that, among shocked repositories, the fraction of
outsiders among the top 50% contributors with most files edited
increases by approximately 8%. This increase remains roughly the
same in magnitude when compared with control repositories (7.2%),
indicating that, in the aftermath of the shock, outsiders are allowed
to make more substantive contributions than they would have in
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Figure 3: External Engagement (H1). The bars show the ef-
fect sizes for the Diff-in-Diff regression, which represents
the effect of the shock on each measure relative to the con-
trol group as a percentage, as well as the difference in me-
dians before and after the shock for shocked repositories
only. The error bars show95% confidence intervals. The stars
show significance (*** p-val < 0.001, ** p-val < 0.01, * p-val <
0.05). Other bar plots in this section follow the same format.

Figure 4: Backlogs (H2)

Figure 5: Member Admin. Orientation (H3)

other times of increased attention. Robustness tests show that this
phenomenon persists at a higher threshold of 40% but not beyond.
However, in contrast to this observation, we observe that the frac-
tion of outsiders among the top 50% most central contributors with
highest degree centrality in the file collaboration network does
not change in the shocked repositories with or without compar-
ing to the controls. Therefore, it appears that, while outsiders are
being allowed to make greater contributions, these contributions
may be relatively isolated from core parts of the project, where
development is likely to be more collaborative.

Figure 6: Coordination Processes and Decentralization (H4).
Missing bars indicate that all values for the corresponding
measurement are zero.

Less experience and effort is required to contribute to discussions
surrounding issues and pull requests than to contribute code. There-
fore, we expect that it would be easier for outsiders to take on more
central roles in the collaboration related to issue and pull request
discussions. Our results for the fraction of outsiders among the top
50% contributors with highest degree centrality for issue and pull
request collaboration networks show that this is indeed the case.
We observe that the number of outsiders among the most central
contributors increases by 3% in the issue collaboration network and
by 5% in the pull request network. In both cases, this effect is ampli-
fied when compared against the controls (7% and 8% among issue
and pull requests networks, respectively), indicating the increased
external attention drives decentralization. Additional robustness
tests show that the increasing importance of outsiders in the issues
collaboration networks is consistent even at higher thresholds of
top 40%, 30%, 20%, and 10%, while it extends only up to the top
40% in the pull request network. Thus the centrality of outsiders
is more persistent with issue discussions which require less effort
and expertise than pull request discussions. This serves as further
evidence that outsiders work within a hierarchy of commitment
and experience as they become more central.

7.4.3 Modularity of Collaboration. Our results provide partial sup-
port for hypothesis 4(c), which predicts increase in specialization
by members and outsiders to deal with coordination costs. First,
in the file and pull request networks, which are associated with
contributors with relatively high levels of commitment, we observe
no effect on the modularity of collaboration in the shock set, with or
without a comparison to the control set. However, in the issue col-
laboration network, which is associated with relatively low effort,
we do see a small increase in modularity of 7.5%, which remains
true when compared with the controls (5%), indicating that some
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level of specialization does occur. Why does file and pull request col-
laboration, which stands to benefit perhaps even more than issues,
not show any effect? We argue that this may be due to the relatively
high complexity of these contributions. Code contributions and
discussions about pull requests require more effort and expertise,
which take more time to build up compared to issue discussions,
which often serve as landing site of general queries.

7.4.4 Automation. Regarding automation, our results provide only
partial support for hypothesis 4(d). Shocked projects become slightly
more likely to adopt automation if they haven’t already (6%). How-
ever, this increased likelihood is no different in the control set.
This suggests that the shocked projects that adopted automation,
would have probably adopted automation anyway as part of their
natural growth. Further, contrary our expectation, the number of
automated tasks in shocked repositories decreases by 20% in the
aftermath and this remains true to a lesser extent even when com-
pared to the controls (8%). What explains this pattern? Organic
growth that leads to a shock is sometimes associated with a con-
certed drive in development to produce a software release. The
number of automated tasks right before a release (and the shock)
could be substantially higher than at other times. This would inflate
automation in the before period. Future work should determine if
this potential mechanism is indeed at play.

8 LIMITATIONS
Our paper has several limitations. First, we only consider the short-
term impact of the shock. Whether the shock has a long lasting
impact remains as an open question. Second, our analysis is based
on logged user actions such as committing and submitting pull
requests, but ignores the text in comments or measures of code
quality in pull requests. A more detailed analysis of this content
could uncover new dynamics that we do not capture here. Third,
we test our hypotheses independently of each other. While this
approach is sufficient to characterize the effects of the attention
shock on the collaboration dynamics, it is possible that there are de-
pendencies between our collaboration measures. For example, the
level of modularity in the issue collaboration network may impact
the time to address issues. Future work can examine interactions
between our measures through the use of structural equation mod-
els. Fourth, we do not consider the impact of repeated shocks on a
repository. Additionally, since we do not have access to trending
data prior to our 7 month period, we cannot be sure that the reposi-
tories that were trending during our period were not trending prior
to it. Fifth, we ignore aspects such as the application and quality
of repositories when selecting our controls. This could affect the
quality of matching. However, because we selected controls based
on GitHub’s statements about trending repositories and covariate
balance was within acceptable limits based on standard metrics, we
deem our control dataset to be adequately similar to the trending
projects. Finally, we characterize the response by repositories to at-
tention shocks but do not address whether the observed responses
are beneficial or harmful. Future work should uncover which types
of responses lead to desirable outcomes such as higher quality and
increase in adoption.

9 DISCUSSION
Our research expands the current understanding of open source
software crowds by studying how they respond to attention shocks.
Trending GitHub crowds actually respond or adapt similarly to
successful organizations despite their differences. Based on the
analysis using the distributed leadership framework, core members
attempt to adapt their coordination style by distributing work re-
sponsibility. For, example, they allow outsiders to take more central
yet unofficial positions. They also increasingly adopt automation
as a means of enforcing community norms and work practices.
The project also self-organizes into a modular structure while core
members restructure their work. Despite this apparent positive
response by core members there are some signals that they are
being overwhelmed, at least in the short term. Due to the increase
in contributions from outsiders, core members strain to coordinate
work and begin to accumulate backlogs, which lead to delays in
responding outsiders. This study provides implications for GitHub
crowds responding to attention shocks. First, most of the engage-
ment from arriving outside contributors are shallow. This has the
effect of increasing the work of core members, making it potentially
difficult to leverage the efforts of these arriving outside contributors.
This begs the question: How can core members make the most of
such increased resources? One approach is to make easily doable
small tasks highly visible through public to-do lists that outsiders
can work on. This can help outsiders easily identify urgent needs
of the project and make it more likely that their contributions will
be accepted.

Second, despite the best efforts of core members, a backlog of
pull requests and issues pile up, and while they eventually close
them, there are long delays in responding to them. This low re-
sponsiveness has the potential of dissuading the contributions of
outsiders, including those who could have become productive con-
tributors. How can crowds being impacted by attention shocks
prevent low responsiveness from running off arriving outsiders?
One possibility is to automate responses to pull requests and issues
using boilerplate responses (e.g. Thanks! Will get back to you) [29].
An automated response might give outsider the sense that members
are aware of their contributions and will eventually review them.

Finally, new work groups emerge and arriving outsiders become
increasingly central. This may explain why members are able to
keep up with closing issues and pull requests. However, this is
more likely to be a spontaneous self-organized response rather
than a planned strategy. An open question is how GitHub should
manage the expectations of members of repositories that are listed
on the trending page. Our findings suggest that this can create
both opportunities for more attention and contributors, but also
a potential disruption to their routines. Providing members with
a warning of what is likely to come their way could help them be
more prepared to herd the deluge of good Samaritans.
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